Chapter 9: Pointers and Runtime Binding 30}

passfn.cpp: passing pointer to function type parameters
#include <iostream.h>
»nt smalli{ int a, int b

return a < b ? a : b;
int large(int a, int b)
kS

return a > b ? a : b;

int select(int (*fn) (int, int), int x, int y)

int value = fn(x, y)
return value;

void main(void)

int m, n;

int (*ptrf) (int, int); // definition of pointer to function
cout << "Enter two integers: "; '

cin >> m 3> n;

int high =‘select(large, m, n); // function as parameter
ptrf = sméll;
int low = select(ptrf, m, n); // pointer to function as parameter
cout << "Large = " << high << endl;
cout << "Small = " << low;
Run
Enter two integers: 10 20
Large = 20
Small = 10

In the above program, the function declarator

int select(int (*fn) (int, int), int x, int y)
indicates {hat it takes the pointer to a function as the first parameter and the remaining two integer
parameters. In main (), the statement

int high = select(large, m, n); // function as parameter
passes the address of the function large () and two integer variables as actual parameters. The
pointer to the function parameter large operates on the last two parameters m and n and returns an
integer result. Similarly, the statement

int low = select(ptrf, m, n); // pointer to function as parameter
passes a pointer to a function variablept r £ (note that, ptr £ is initialized to the address of small()).
Such a mechanism is useful in selecting the type of operation to be performed at runtime.

9.16 Pointers to Constant Objects

Consider the statement

const int* pi; // it is the same as: int const * pi;

302 Mastering C++

It defines p1i as a pointer to a constant integei. Let pi be initialized by the statement
int i{ 20 J:
pi = 1i;
i.e., *pi would refer to the integer i [0]. Due to the définition of pi (which. as mentioned above. is
const 1int* pa1;), statements such as
*pi = 10; or even pi{ 10] = 20;
are invalid. It results in compile time errors. But pi itself can be changed. i.c., a statement such as
pi++;
is perfectly valid. Such pointers can be used as character pointers, when the pointer has to be passed

to a function for printing. It is a good practice to code such a function for instance, print () as
follows:

void print(const char* str)
{
cout << str;

}

It accepts a const char * (pointer to constant character). The string being pointed to cannot be
modified. This is a safety measure, since it avoids accidental modification of the string passed to the
function. In the function, the pointer str can be changed and a statement such as

Str++;.
is valid. But this does not affect the calling procedure, since the pointer is passed by value.

9.17 Constant Pointers

The statement

int* const pi = i;
defines a constant pointer to an integer (assume that i is an integer array). In this case, the use of a
statement such as

*pi = 10;
is perfectly valid, but others that modify the pointer, such as
pi++ ;

are invalid and result in compile time errors.

A pointer definition such as
const int* const pi = i;
will disallow any modifications topi or the integer to whichpi is referencing. (Assume as before that
i is an integer array).

9.18 Pointer to Structures

A pointer can also hold the address of user defined data types such as structures. Similar to pointers to
standard data types, pointers to user defined data types can be initialized with address of statically or
dynamically created data items. Note that in C++, strictures can combine both the data and functions
operating on it into a single unit. Both the data and function members of structure are accessed in the
same way. The syntax for defining pointer to structures is shown in Figure 9.13.

Chapter 9: Pointers and Runtime Binding 3

name of the structure pointer to structure

N

StructureName *ptrl, ...;

Figure 9.13: Syntax of defining pointer to structure

The syntax for accessing members of a structure using a structure pointer is as follows:
StructPtrVar->MemberName;

The symbol -> is called the arrow operator. (The dot operator connects a structure with a member of
the structure; the arrow operator connects a pointer with a member of the structure). The program
bdate. cpp illustrates the mechanism of creating user defined data type variables dynamically.

// bdate.cpp: displaying birth date of the authors
#include <iostream.h>
struct date

{ //specifies a structure
int day;
int month;
int year;
void show()
{
cout ‘<< day << "-" << month << "'-" << year << endl;

}

}i

void read(date *dp)

{
cout << "Enter day: ";
cin >> dp->day;
cout << "Enter month: *;
cin >> dp->month;
cout << "Enter year: ";
cin >> dp->year;

}

void main()

{
date 41, *dpl, *dp2;
cout << "Enter birth date of boy..." << endl;

read(&d1l);

// read date2

dp2 = new date; // allocate memory dynamically

cout << "Enter birth date of girl..."* << endl;

read(dp2);

cout << "Birth date of boy: ";

dpl = &d1; // dpl points to statically allocated structure
dpl->show();

~out << *Birth date of girl: *;
dp2->show () :

304 Mastering C++

delete dp2; // release memory
}
Run

Enter birth date of boy...
Enter day: 14

Enter month: 4

Enter year: 71

Enter birth date of girl...
Enter day: 1

Enter month: 4

Enter year: 712

Birth date of boy: 14-4-71
Birth date of girl: 1-4-72

In main (), the statement
date d1, *dpl, *dp2;
creates variable d1 and two pointers of type structure date. The statement,
dp2 = new date; // allocate memory dynamically

creates the structure date type item dynamically and stores its address in a pointer variable dp2. The
statement

dpl = &d1; // dpl points to statically allocated structure

assigns the address of statically created variable d1 to the pointer variable dpl. The statement,
dpl->show () ;

accesses the member function show () of date using the pointer variable dp1. The statement
delete dp2;

releases the memory allocated to the pointer variable dp2.

Arithmetic Operations on Pointer to structures

Consider the statement
data *dl;

It defines the pointer variable d1 to the structure date. The statement
++dl->day;

increments the contents of the member variable day and not d1. However, the statement
(++dl) ->day;

increments d1 first, and then accesses day. The statement
dl++->day;

increments d1 after accessing the member variable day. The statement
dl++; or ++dl;

increments d1 by sizeof (date).

Self Referential Structure

A structure having references to itself is called a self-referential structure. It is useful for implementing
Jata structures such as linked list, trees, etc. A linked list consists of structures related to each other
«hrough pointers. The self referential pointer in the structure points to the next node of a list. The
organization of a linked list is shown in Figure 9.14.

Chapter 9: Pointers and Runtime Binding 305

struct LIST

i first
! data

Figure 9.14: Linked list with self-referential structures

The program list.cpp illustrates the manipulation of a linked list. It supports create. de-
lete, and display operations on the linked list. The structure LIST is a self referential structure,
since it has a pointer to the next node as one of the data items.

/ / list.epp: self referential structure-linked list
#include <iostream, h>
#include <new.h>
#include <process.h>
#define SUCC(node) node->next
struct LIST
{
int data; // node data
LIST *next; // pointer to next node
}i
// creates node using data and returns pointer to first node of the list
LIST * InsertNode(int data, LIST *first)
{
LIST *newnode;
newnode = new LIST; // allocate memory for node
if(newnode == NULL)
{

.

cout << "Error: Out-of-memory" << endl;

exit(1);
}
newnode->data = data; // Initialize list data member
SUCC (newnode) = first; // new node becomes first node

return newnode;

}
// deletes node whose data matches input data and returns updated list

LIST * DeleteNode(int data, LIST *first)

{
LIST *current, *pred; // work space for insertion
if(!first)
{

cout << "Empty list" << endl;
return first;
}
for (pred=current=first;current; pred=current,current = SUCC(current))
if(current->data == data)
{
// node found, release this node
if(current == first) // if node to be deleted is first node
first = SUCC(current);// then update list pointer

306 Mastering C++

else
SUCC(pred) = SUCC(current); // bypass the node
delete current; // release allocated memory

return first;
}
return(first);

/ Display list

void DisplayList(LIST *first)

{
LIST *list;
for(list = first; list;.list = SUCC(list))

. cout << "->" << list->data;

‘cout << endl;

¥

void main()

{
LIST *list = NULL; // list is empty
int choice, data;

set_new_handler(0); // makes new to return to NULL if it fails
cout << "Linked-list manipulations program...\n";

while (1)

{

cout << "List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit: *";
cin >> choice;
switch(choice)

{

case 1:
cout << "Enter data for node to be created: ";
cin >> data;
list = InsertNode(data, list);
break;

case 2:
cout << "List contents: *;
DisplayList(list);
break;

case 3:
cout << "Enter data for node to be delete: *;
cin >> data;
list = DeleteNode(data, list);
break;

case 4:
cout << "End of Linked List Computation !!.\n";
return;

default:
cout << "Bad Option Selected\n"*;
break;

Chapter 9: Pointers and Runtime Binding 307

Run

Linked-list manipulations program...

List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit:
Enter data for node to be created: 5

List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit:
Enter data for node to be created: 7

List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit:
Enter data for node to be created: 3

List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit:
List contents: ->3->7->5

List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit:
Enter data for node to be delete: 7

List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit:
List contents: ->3->5

List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit:
End of Linked List Computation !!.

N T O s

In main (), the statement
list = InsertNode(data, list);

takes an integer type data and a pointer to the first node as input parameters. It returns a pointer to the
updated linked list. Initially, the second parameter has to be set to NULL indicating a empty linked list.

The statement
list = DeleteNode(data, list);
deletes a node which matches with the parameter data and returns the address of the first node in the
linked list to the pointer 1ist. The statement
DisplayList(list };
prints the data information contents of a linked list on the console.

9.19 Wild Pointers

Pointers have to be handled very carefully since, issues associated with them are confusing. Especially,
the scope and extent of a data object, to which a pointer is pointing to is a crucial aspect. Pointers exhibit
wild behavior if these crucial issues are not taken into consideration while accessing data. A pointer
becomes a wild pointer when it is pointing to an unallocated memory or when it is pointing to a data
item whose memory is already released. Side effects of such pointers are creation of garbage memory
and dangling reference. The memory becomes garbage memory when a pointer pointing to a memory
object (data item) is lost; i.e., it indicates that the memory itetn continues to exist, but the pointer to it is
lost; it happens when memory is not released explicitly. A memory access using a pointer is known as
dangling reference when a pointer to the memory item continues to exist, but memory allocated to that
item is released; i.e., accessing memory object, for which no memory is allocated. Pointers become wild
pointers under the following situations:

+ When a pointer is uninitialized

+ Pointer modification

« Pointer referencing to a data which is destroyed

(1) When pointer is uninitialized: It contains an illegal address and it is difficult to predict the outcorne

308 Mastering C++

of a program. For instance, in the definition

int *p;
it is impossible to predict which integer value the pointer p is pointing to. The pointer wildl.cpp
illustrates accessing data through the uninitialized variables.

/ / wildl.cpp: accessing uninitialized pointer
#include <iostream.h>
void main ()
{
int *p; // pointer is uninitialized
for(int'i = 0; 1 < 10; i++)
cout << p[i] << * *; // accessing uninitialized pointer

}

Run (under MS-DOS)
0 21838 19532 17184 17736 19267 0 14 0 -1

Run (under UNIX)
-2130509557 73728 8192 0 105384 8224 0 0 -1139793920 -80506873

It can be observed that, the output generated by the program is different from system to system. The
use of a statement such as
pll] = 10;
might modify some sensitive data pertaining to a system leading to corruption of the whole system or
the program may behave erratically. Under UNIX system, such errors will lead to segment violation error
as illustrated in the program wild2. cpp.

// wild2.cpp: assigning data using uninitialized pointers

#include <iostream.h>

#include <string.h>

void main()

(
char *name;
strcpy(name, "Savithri *); // assigning without memotry allocation
cout << name;

}
Run (under MS-DOS)

Savithri Null pointer assignment

Run (under UNIX)
Segmentation fault (core dumped)

In main(), the statement

strcpy(name, *Savithri ");
assigns the string "Savithri " to a pointer to string, for which memory is not allocated. From the
output, it can be noted that, in the UNIX environment the program immediately terminates by core
dumping when such a situation is detected. Hence, use a statement such as

rame = new char(10];

Chapter 9: Pointers and Runtime Binding 309

to avoid such runtime errors before trying to store anything in the memory.

(2) Pointer modification: The inadvertent storage of a new address in a pointer variable is referred to as
pointer modification. This situation will occur when some other wild pointer modifies the address of a
valid pointer. It transforms a valid pointer to a wild pointer.

(3) Pointer referencing to a data which is destroyed. In this case, the pointer tries to access memory
object or item which no longer exists. It is illustrated in the program wild3. cpp.

/ / wild3.cpp: assigning destroyed object
#include <iostream.h>
#include <string.h>
char * nameplease();
char * charplease();
void main()
{
char :pl, *p2;
pl = nameplease();
p2 = charplease();
cout << "Name = " << pl << endl;
cout << "Char = " << p2 << endl;
}
char * nameplease()
{
char name[) = "Savithri *;
return name;
}
char * charplease()
{
char ch;
ch = 'X';
return &ch;

}

Run
Name = SavivN'
Char = i

In the function nameplease (), invoked by the statement

pl = nameplease() ;

when the address of; the variable name is returned, the control comes out of the functionnameplease ()
and hence, the varidable name dies (since it is an auto variable). Thus p1 would contain the address of
the variable which does not exist. In effect, this is a situation of dangling reference. In such a situation
the compiler issues a warning such as

Suspicious pointer reference

or

Returning a reference to a local object
It implies that a pointer or reference to a local (auto) variable/object should never be returned. As soon
as the function is terminated, the memory assigned to the local variable is released or gets destroyed,
and any reference or pointer points to some invalid data. However, returning a copy (return by value) of
alocal variable/object is valid.

210

Mastering C++

Another important point to be noted is that, avoid storing the address of a variable or an object intc
a pointer in the inner block, and using the same in the outer block. The programwild4 . cpp illustrates
the wild pointer accessing garbage location.

// wild4.cpp: out of scope of a block variable access
#include <iostream.h>

#include <string.h>

void main{)

{

char *pl:;

{

)

char name[] = "Savithri ";
pl = name;

// do some processing here

cout << "Name = " << pl << endl;
}
Run
Name = Savith@s$!

In main (), the statement

cout << "Name = " << pl << endl;

accesses the data pointed to by the pointer variable p1. The variable pl is assigned to point to the
variable name defined within an inner block. When the execution of this block is completed, all the
variables are destroyed and hence, accessing of data stored in the variable name becomes invalid data.
In some situation, the programs might execute properly, but they may corrupt other program'’s data and
lead to system crash.

The above discussion also holds good for pointer to objects. Like variables, whenever objects goes
out of scope, they are destroyed. Referencing such objects is like accessing invalid-data variable and
hence, such reference should be avoided.

Review Questions
9.1 What are pointers ? What are the advantages of using pointers in programming ? Explain
addressing mode required to access memory locations using pointers.
9.2 Under what situations, the use of pointers is indispensable ?
9.3 Write a program to print address of the variables defined by the following statement:
int a, b = 10;
float ¢ = 2, d;
9.4 Explain the syntax for defining pointer variables. How different are these from normal variables?
9.5 What is dereferencing of pointers ? Write a program to dereference the pointer variables in the
following statements (print value pointed to by pointer variables):
int *a; double *b;
a = &i; b = &f;
9.6 What are the differences between passing parameters by value and by pointers ? Give examples.

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15
9.16

Chapter 9: Pointers and Runtime Binding 311

What are the different arithmetic operations that can be performed on pointer variables ? Con-
sider the following definitions:

int *a, *b, c; float *e; char *p;
The pointer variables a, b, and c are initially pointing to memory locations 100, 150, and 50
(assume) respectively. What is the address stored in the pointer variable (a, b, and ¢) on execu-
tion of the following statements ?

a++;

b = --a;

cout << *b++;

cout << *++p;

e++;

a = &c;
Consider the following definitions:

int *a, *b, c; float *e; char *p,; int il, *ip;

char ch; long 1; double *d; long double lb;
What is the return value of sizeof () operator when applied to the variables created by the
above statements individually? For instance, the return value of sizeof (int) orsizeof (il)
is 2 (in DOS) and 4 (in UNIX). Comment on such differences.

What is runtime memory management ? What support is provided by C++ for this and how does
it differs from C's memory management ?

Write a program for finding the smallest and largest in a list of N numbers. Accept the value of
N at runtime and allocate the necessary amount of storage for storing numbers.

Write an interactive program for manipulation of matrices. Support addition, subtraction, and
multiplication operations on them. Create matrices dynamically.

Write a program for sorting names of persons by swapping pointers instead of data. Use Comb
sort algorithm for sorting. (Comb sort is explained in the chapter Arrays and Strings).
Explain syntax for defining pointers to functions. Write a program which supports the following:
a compute(sin, 1.345);
b compute(log, 150);
¢ = computer(sqrt, 4.0);

Consider the function show (), which is defined as follows:
void show(int a, int b, int c¢)

{

cout << a << " " << b << " " << ¢;

}

int *i, 3;:

i=&j;

j=2;

int k(] = {1, 2, 3 };
What is the output of the following statements: (Note that actual parameters are evaluated from
right to left while assigning them to formal parameters)

show(*i, j, *k);

show(*i, *i++, *i);

show(*k, *k++, *k++);
What are the differences between pointers to constants and constant pointers ? Give examples.

Write a program for creating a linked list and support insertion and deletion operations on it.

312

9.19

9.20

9.21

Mastering C++

Nodes of linked list have to be modeled using nested structures.

Define the following: (a) Wild pointers (b) Garbage (c) Dangling reference. Consider the follow-
ing program:
#include <iostream.h>
void main()
{
int * a;
const int *b;
int *const p;
int ¢ = 2, d = 3;
cout << a; b = &c; p = &4;
*b = 10;
b = new int;
*b = 10;
delete b;
cout ‘<< *b;
a = new int([10];

a[9) = 20;
afl0] = 30;

a = new int(5];
a++;

++b;

cout << *a;
}
Observe the above program carefully and find out where all garbage, dangling reference, and

~ wild pointers exist. Identify statements which are treated as errorneous by the compiler.

Write the function locate (s, pattern), which returns -1 if the string pat tern does not
exist in s, otherwise returns location at which it is found.
Consider the following statements:

char *name;

chat str[20];

name = new char|[strlen(str)+1];

strcpy(name, str);
Why one more extra byte is allocated to the stringname ? What will happen if one extra byte is
not allocated ? What is the effect of the following statements during runtime:

char *s;

cin >> s;
Does the second statement leads to any runtime error ? Give reasons.

10

Classes and Objects

10.1 Introduction

Object-oriented programming paradigm is playing an increasingly significant role in the design and
implementation of software systems. It simplifies the development of large and complex software sys-
tems and helps in the production of software, which is modular, easily understandable, reusable, and
adaptable to changes. The object-oriented approach centers around modeling the real world problems
in terms of objects (data decomposition), which is in contrast to older, more traditional approaches that
emphasize a function oriented view, separating data and procedures. (algorithm decomposition). Ob-
ject oriented modeling is a new way of visualizing problems using models organized around the real-
world concepts. Objects are the result of programming methodology rather than a language.

Data

datal

dataz2
data3

Functions

funcl ()
func2 ()

func3 ()

Figure 10.1: Class grouping data and functions

Object-oriented programming constructs modeled out of data types called classes. Defining vari-
ables of a class data type is known as aclass instantiation and such variables are called objects. (Object
is an instance of a class.) A class encloses both the data and functions that operate on the data, into a
single unit as shown in Figure 10.1. The variables and functions enclosed in a class are called data
members and member functions respectively. Member functions define the permissible operations on
the data members of a class.

Placing data and functions together in a single unit is the central theme of object-oriented program-
ming. The programmers are entirely responsible for creating their own classes and can also have access
to classes developed by the software vendors.

314 Mastering C++

Classes are the basic language construct of C++ for creating the user defined data types. They are
syntactically an extension of structures. The difference is that, all the members of structures are public
by default whereas, the members of classes are private by default. Class follows the principle that the
information about a module should be private to the module unless it is specifically declared public.

10.2 Class Specification

C++ provides support for defining classes, which is a significant feature that makes C++ an object
oriented language. In C terms, a class is the natural evolution of a structure. Classes contain not only
data but also functions. The functions are called member functions and define the set of operations
that can be performed on the data members of a class. Thus, a class can be described as a collection of
data members along with member functions. This property of C++, which allows association of data and
functions into a single unit is called encapsulation. Sometimes, classes may not contain any data
members or member functions (and such classes are called as empty classes). The syntax of a class
specification is shown in Figure 10.2.

' Name of the user
Keyword defined class

class ClassName

{
// body of a class
}.

I——»' ¢/ Semicolon required here

Figure 10.2: Syntax of class specification

The class specifies the type and scope of its members. The keyword class indicates that the name
which follows (ClassName) is an abstract data type. The body of a class is enclosed within the curly
braces followed by a semicolon—the end of a class specification. The body of a class contains decla-
ration of variables and functions, collectively known as members. The variables declared inside a class
are known as data members, and functions are known as member functions. These members are usually
grouped under two sections, private and public, which define the visibility of members.

The private members are accessible only to their own class's members. On the other hand, public
members are not only accessible to their own members, but also from outside the class. The members in
the beginning of class without any access specifier are private by default. Hence, the first use of the
keyword private in a class is optional. A class which is totally private is hidden from the external
world and will not serve any useful purpose.

The following declaration illustrates the specification of a class called st udent havingroll_no
and name as its data members:

class student

{
int roll_no; // roll number
char name[20]; // name of a student
public:

Chapter 10; Classes and Objects 315

void setdata(int roll_no_in, char *name_in)
{

roll_no = roll_no_in;
strcpy(name, name_in);

}

void outdata()

{

cout << "Roll No = " << roll_no << endl;
cout << "Name = " << name << endl;
}
Yi
A class should be given some meaningful name, (for instance, student) reflecting the information
it holds. The class name s tudent becomes a new data type identifier, which satisfies the properties of
abstraction; it can be used to define instances of class data type. The class student contains two
data members and two member functions. The data members are private by default while both the
member functions are public as specified. The member function setdata () can be used to assign
values to the date members roll_no and name. The member function outdata () can be used ior
displaying the value of data members. The data members of the class student cannot be accessed by
any other function except member functions of the student class. It is a general practice to declare
data members as private and member functions as public. Three different notations for representation

of the student class is shown in Figure 10.3.

int roll_no;
int roll_no char name(20];

setdata()

setdatal() A
char name([20] “private:

roll_no
name

setdatal) outdata ()
outdatal() outdata()
(a) m . (©

Figure 10.3: Different representations of the class student

The name of data and member functions of a class can be the same as those in other classes; the
members of different classes do not conflict with each other. Essentially, a class identifies all the data
members associated with its declaration. The following example illustrates this concept:

class Person
{
private:
char name[20];
int age;

316 Mastering C++

The data member name appears in the student class and in the Person class declarations, but their
scope is limited to their respective classes. However, more than one class with the same class-name in
a program is an error, whether the declarations are identical or not. A class can have multiple member
functions (but not data members) with the same name as long as they differ in terms of signature ; this
feature is known as method overloading.

Like structures, the data members of the class cannot be initialized during their declaration, but they
can be initialized by its member functions as follows:

class GeoObject
{

float x, y = 5; // Error: data members cannot be initialized here
void SetOrigin() // set point to origin

}i
The data members x ory of the class GeoObject cannot be initialized at the point of their declaration,
but, they can be initialized in member functions as indicated in the SetOrigin () member function.

10.3 Class Objects

A class speciiication only declares the structure of objects and it must be instantiated in order to make
use of the services provided by it. This process of creating objects (variables) of the class is called class
instantiation. It is the definition of an object that actually creates objects in the program by setting
aside memory space for its storage. Hence, a class is like a blueprint of a house and it indicates how the
data and functions are used when the class is instantiated. The necessary resources are allocated only
when a class is instantiated. The syntax for defining objects of a class is shown in Figure 10.4. Note that
the keyword class is optional.

Name of the user Name of the user-defined
Keyword defined class object
class ClassName ObjectName, ...;

Figure 10.4: Syntax for creating objects

An example of class instantiation for creating objects is shown below:
class student sl;
or

student sl;
It creates the object s1 of the class student. More than one object can be created with a single
statement as follows:

class student sl, s2, s3, s4;

or
student sl, s2, s3, s4;

It creates multiple objects of the class student.

Chapter 10: Classes and Objects 1

The definition of an object is similar to that of a variable of any primitive data type. Objects can also
‘be created by placing their names immediately after the closing brace like in the creation of the structure
variables. Thus, the definition

class student

{

} sl, s2, s3, s4;

creates objects s1,s2,s3, and s4 of the class student. In C++, the convention of defining objects at
the point of class specification is rarely followed; the user would like to define the objects as and when
required, or at the point of their usage.

An object is a conceptual entity possessing the following properties:

« itis identifiable.

« it has features that span a local state space.

« it has operations that can change the status of the system locally, while also inducing operations in
peer objects.

« it refers to a thing, either a tangible or a mental construct, which is identifiable by the users of the
target system.

10.4 Accessing Class Members

Once an object of a class has been created, there must be a provision to access its members. This is
achieved by-using the member access operator, dot (.). The syntax for accessing members (data and
functions) of a class is shown in Figure 10.5.

— Name of the user defined object

member access specifier

—— data member of a class

ObjectName . DataMember

(a) Syntax for accessing data member of a class

Name of the user defined object
member access specifier
— name of the member function
arguments to the function
o —_—

ObjectName FunctionName (Actual Arguments)

(b) Syntax for accessing member function of a class

Figure 10.5: Syntax for accessing class members

318 Mastering C++

If a member to be accessed is a function, then a pair of parentheses is to be added following the
function name. The following statements access member functions of the object s1, which is an in-
stance of the student class:

sl.setdata(10, "Rajkumar");

sl.outdata();
The program student . cpp illustrates the declaration of the class student with the operations on
its objects.

// student.cpp: member functions defined inside the body of the student class
#include <iostream.h>

#include <string.h>

class student

t

private:

int roll_no; // roll number

char name[20]; // name of a student
public:

// initializing data members
void setdata(int roll_no_in, char *name_in)
{
roll_no = roll_no_in;
strcpy(name, name_in);
}
// display data members on the console screen
void outdata()
{
cout << "Roll No = " << roll_no << endl;
cout << "Name = " << name << endl;

}i

void main()

{
student sl; // first object/variable of class student
student s2; // second object/variable of class student
sl.setdata(1, "Tejaswi"); // object sl calls member setdata()
s2.setdata(10, "Rajkumar"); //object s2 calls member setdata()
cout << "Student details..." << endl;
sl.outdata(); // object sl calls member function outdata()
s2.outdatal(); // object s2 calls member function outdata()

) .

Run

Student details...
Roll No =1

Name = Tejaswi
Roll No = 10

Name = Rajkumar

The various actions performed on objects of the class student are portrayed in Figure 10.6 with
the client object accessing the services provided by the class student.

Chapter 10: Classes and Objects 319

In main (), the statements

student sl; // first object/variable of class student
student s2; // second object/variable of class student

create two objects called s1 and s2 of the student class. The statements

sl.setdata(1, "Tejaswi"); //object sl calls member function setdata
s2.setdata(10, *Rajkumar"); //object s2 calls member function setdata

initialize the data members of the objects s1 and s2. The object s1’s data member roll_no is
assigned 1 and name is assigned Tejaswi. Similarly, the object s2’s data member roll_no is
assigned 10 and name is assigned Rajkumar.

Instance of the class student

Client program

- T

student s2;

setdata(roll_no, name)

private member
variables

L— |s2.setdata (10, "Rajkumar") ;

int roll_no
- char name(20]

s2.outdata();

L’___/

outdata()

Figure 10.6: Student object and member access

The statements
sl.outdatal(); // object sl calls member function outdata
s2.outdatal(); // object s2 calls member function outdata
call their member outdata () to display the contents of data members namely, rol1_no and name of
student objects s1 and s2 in succession. Thus, the two objects s1 and s2 of the class student have
different data values as shown in Figure 10.7.

Client-Server Model

In conventional programming languages, a function is invoked on a piece of data (function-driven
communication), whereas in an OOPL (object-oriented programming language), a message is sent to an
object (message-driven communication) i.e., conventional programming is based on function abstrac-
tion whereas, object oriented programming is based on data abstraction.

The object accessing its class members resembles a client-server model. A client seeks a service
whereas, a server provides services requested by a client. In the above example, the class student

320 Mastering C++

resembles a server whereas, the objects of the class student resemble clients. They make calls to the
server by sending messages. In the statement

s2.setdata(10, "Rajkumar"); // object s2 calls member function setdata
the object s2 sends the message setdata to the server with the parameters 10 and Rajkumar. As
a server, the member function setdata () of the class student performs the operation of setting
the data members according to the messages sent to it. Similarly, the statement

s2.outdata() ;
can be visualized as sending message (outdata) to object s2 's class to display object contents. The
term message is commonly used in OOPs terminology to provide an itlusion of objects as discrete
entities, and a user communicates with them by calling their meniber functions as shown in Figure 10.8.
Thus, by its very nature, OO computation resembles a client-server computing model.

objects of class student

student sl; student s2;
roll no roll no
name name
I Rajkumar I

Figure 10.7: Two objects of the class student

In OOPs, the process of programming involves the following steps:
+ Creation of classes for defining objects and their behaviors.
+ Creation of class objects; class declaration acts like a blueprint for which physical resources are not
allocated.
+ Establishment of communication among objects through message passing.

Chapter 10: Classes and Objects 321

Similar to the real world objects. OO objects also have a life cycle. They can be created and de-
stroved automaticallyv whenever necessary. Communication between the objects can take place as
long as they are alive (active). Communication among the objects takes place in the same way as people
pass messagces to one another. The concept of programniing with mmessage passing model is an efficient
way of modeling real-world problems on computers.

student s2;

1c

i Rajkumar l

class student

Server Services

setdata ()

Client's Data Server
getdata ()
s2.setdata (10, "Rajkumar”); Client
4 N el
Object l Information

Message
Figure 10.8: Client-Server model for message communication

A message for an object is interpreted as a request for execution of a proce Jure. The subroutine or
function is invoked soon after receiving the message and the desired results are generated within an
object. It comprises the name of an object, the name of a function, and the information to be sent to an
object.

10.5 Defining Member Functions

The data members of a class must be declared within the body of the class, whereas the member
functions of the class can be defined in any one of the following ways:

« Inside the class specification
+ Outside the class specification

The syntax of a member function definition changes depending on whether it is defined inside or
outside the class specification. However, irrespective of the location of their definition (inside or out-
side a class), the member function must perform the same operation. Therefore, the code inside the
function body would be identical in both the cases. The compiler treats these two types of functior
definitions in a different manner.

322 Mastering C++

Member Functions Inside the Class Body

The syntax for specifying a member function declaration is similar to a normal function definition except
that it is enclosed within the body of a class and is shown in Figure 10.9. All the member functions
defined within the body of a class are treated as inline by default except those members having looping
statements such as for, while, etc., and it also depends on compilers.

class ClassName
{
private:
int age;
int SetAge(int agein) - Member function
{

age = agein; // body of the function
}

public:
int b;
void myfunc() - Member function
{

// body of a function

Y

Figure 10.9: Member function defined within a class

The program datel . cpp demonstrating the definition of member functions with the class speci-
fication of the date class. It has private data members day, month, year and inline member func-
tions, set () which initializes data members and show (), which displays the value stored in the data
members.

// datel.cpp: date class with member functions defined inside a class
#include <iostream.h>
class date

{

private:
int day;
int month;
int year;

public:
void set(int DayIn, int MonthIn, int YearIn)
{

day = DayIn;
month = MonthlIn;
year = Yearln;
}
void show()
{
cout << day << "-" << month << "-" << year << endl;

}

Chapter 10: Classes and Objects 323

void main()

{
date dl, d2, d3; // date objects dl, d2, and d3 creation
// set date of births
dl.set(26, 3, 1958);
d2.set(14, 4, 1971);
d3.set(1, 9, 1973);
cout << "Birth Date of the First Author: *;
dl.show();
cout << "Birth Date of the Second Author: *;
d2.show() ;
cout << "Birth Date of the Third Author: *;
d3.show() ;

}

Run

Birth Date of the First Author: 26-3-1958
Birth Date of the Second Author: 14-4-1971
Birth Date of the Third Author: 1-4-1972

Member functions defined inside a class are considered as inline functions by default thus, offering
both advantages and limitations of inline functions. However, in some implementations, member func-
tions having loop instructions such as for, while, do..while, etc., are not treated as inline
functions. The compiler produces a warning message if an attempt is made to define inline member
functions with loop instructions. Normally, functions with a small body are defined inside the class
specification. In the above student class specification, the functions set () and show() are
treated as inline functions by the compiler.

Member Functions Outside the Class Body

Another method of defining a member function is to declare function prototype within the body of a
class and then define it outside the body of a class. Since the functions defined outside the class
specification have the same syntax as normal functions, there should be a mechanism of binding the
functions to the class to which they belong. This is done by using the scope resolution operator(::). It
acts as an identity-label to inform the compiler, the class to which the function belongs. The general
format of a member function definition is shown in Figure 10.10. This form of syntax can be used with
members defined either inside or outside the body of a class, but member functions defined outside the
body of a class must follow this syntax.

class ClassName
{

ReturnType MemberFunction(arguments); - function prototype

SO /zuser defined class name
}i — Scope resolution operator

ReturnType ClassName :: MemberFunction (arguments)
{

// body of the function
}

Figure 10.10: Member function definition outside a class declaration

324 Mastering C++

The label ClassName : : informs the compiler that the function MemberFunction is the mem-.
ber of the class ClassName. The scope of the function is restricted to only the objects and other
members of the class. The program datel.cpp having member functions inside the body of the
date class is modified to date2 . cpp which defines member functions outside the body of a class.
// date2.cpp: date class with member functions defined outside the class body
#include <iostream.h>
class date

{

private:
int day;
int month;
int year;
public:
void set(int DayIn, int MonthIn, int YearIn); //declaration
void show(); // declaration
Yi
void date::set(int DayIn, int MonthIn, int YearIn) //definition
{
day = DaylIn;
month = MonthlIn;
year = YearlIn;
}
void date: :show() // definition
{

cout << day << "-" << month << "-" << year << endl;

}

void main ()

{
date d1, d2, d4d3; // date objects dl, d2, and d3 creation
// set date of births
dl.set(26, 3, 1958);
d2.set(14, 4, 1971);
d3.set(1, 9, 1973);
cout << "Birth Date- of the First Author: *;
dl.show() ;
cout << "Birth Date of the Second Author: ";
d2.show() ;
cout << "Birth Date of the Third Author: *;
d3.show() ;

}

Bun

Birth Date of the First Author: 26-3-1958
Birth Date of the Second Author: 14-4-1971
Birth Date of the Third Author: 1-4-1972
Consider the member functions set and show defined in the above program:
void date::set(int DayIn, int MonthIn, int YearIn)
{
day = DaylIn;

Chapter 10: Classes and Objects 325

void date: :show()
{
cout << day << "-" << month << "-" << year << endl;

In the above definitions, the label date: : informs the compiler that the functions set and show
are the members of the date class. It can access all the members (date and functions) of the date class
and also global data items and functions if necessary. Some of the special characteristics of the member
functions are the following.

« A program can have several classes and they can have member functions with the same name. The
ambiguity of the compiler in deciding which function belongs to which class can be resolved by the
use of membership label (ClassName: :), the scope resolution operator.

« Private members of a-class, can be accessed by all the members of the class, whereas non-member
functions are not allowed to access. However, friend functions (discussed later) can access them.

« Member functions of the same class can access all other members of their own class without the use
of dot operator.

+ Member functions defined as public act as an interface between the service provider (server) and
the service seeker (client).

« A class can have multiple member functions with the same name as long as they differ in terms of
argument specification (data type or number of arguments).

10.6 Outside Member Functions asinline

OOP provides feature of separating policy from the mechanism. Policy provides guidelines for defining
specification whereas mechanism provides guidelines for design and implementation. It is a good
practice to declare the class specification first and then implement class member functions outside the
class specification. The inline member functions are a group of member functions that decrease the
overhead involved in accessing member functions and make the usage of member functions more
efficient. An inline member function is treated like a macro; any call to this function in a program is
replaced by the function itself. This is called inline expansion. By this, the overhead incurred in the
transfer of control by the function call and the function return statements are cut down. Note that inline
functions are also called open subroutines since they get expanded at the point of a call whereas,
normal functions are called closed subrbutines since only call to a function exists at the point of their
call. A member function prototype detmed within a class is declared without any special keyword.

C++ treats all the member functions that are defined within a class as inline functions and those
defined outside as non-inline (outline). Member function declared outside the class declaration can be
made inline by prefixing the inline to its definition as shown in Figure 10.11.

Keyword : indicates function defined
outside a class body is inline

o

inline ReturnType ClassName :: FunctionName (arguments)

{
// body of Inline function

}

Figure 10.11: Inline function definition outside the class declaration

326 Mastering C++

The keyword inline acts as a function qualifier. The modified program of date2 . cpp is listed
in date3 . cpp, making all the member functions of the class date as inline member functions.

// date3.cpp: date class with member functions defined outside as inline
#include <iostream.h>
class date
{ // specifies a structure
private:)
int day;
int month;
int year;
public:
void set(int DayIn, int MonthIn, int YearlIn); //declaration
void show(); // declaration
Yi
inline void date::set(int DayIn, int MonthIn, int YearIn)
{
day = DaylIn;
month = MonthIn;
year = YearIn;
}
inline void date: :show() // definition
{
cout << day << "-" << month << "-" << year << endl;
}

void main()

{
date d1, d2, d3; // date objects dl, d2, and d3 creation
// set date of births
dl.set(26, 3, 1958);
d2.set(14, 4, 1971);
d3.set(1, 4, 1972);
cout << "Birth Date of the First Author: ";
dl.show();
cout << "Birth Date of the Second Author: *;
d2.show() ;
cout << "Birth Date of the Third Author: ";
d3.show() ;

}

Bun

Birth Date of the First Author: 26-3-1958
Birth Date of the Second Author: 14-4-1971
Birth Date of the Third Author: 1-4-1972

In the above program, the member functions set () and show () of the class date are considered
as inline member functions defined outside the body of the class date. They are explicitly defined as
inline functions with the use of the inline qualifier. The use of the inline qualifier in the statements

inline void date::set(int DayIn, int MonthIn, int YearIn)
inline void date: :show()

Chapter 10: Classes and Objects 327

inform the compiler to treat the member functions set and show as inline functions. The method of
invoking inline member functions is the same as those of the normal functions. In main (), the state-
ments

dl.set(26, 3, 1958);

d2.show();
will be replaced by the function itself since the function is an inline function. Note that, the inline
qualifier is tagged to the inline member function at the point of its definition.

The feature of inline mémber functions is useful only when they are short. Declaring a function
having many statements as inline is not advisable, since it will make the object code of a program
very large. However, some C++ compilers judge (determine) whether a given function can be appropri-
ately sized to inline expanded. If the function is too large to be expanded, it will not be treated as inline.
In this case, declaring a function inline will not guarantee that the compiler will consider it as an inline
function.

When to Use inline Functions
The following are simple thumb rules in deciding as to when inline functions should be used:

+ In general, inline functions should not be used.

+ Defining inline functions can be considered once a fully developed and tested program runs too
slowly and shows bottlenecks in certain functions. A profiler (which runs the program and deter-
mines where most of the execution time is spent) can be used in deciding such an optimization.

« Inline functions can be used when member functions consist of one very simple statement such as
the return statement in date: : getday (), which can be implemented as follows:

inline int date::getday () // definition
{

return day;
}
o It is only useful to implement an inline function if the time spent during a function call is more
compared to the function body execution time. An example, where an inline function has no effect at
all is the following:

inline void date::show() // definition

{

cout << day << "-" << month << "-" << year << endl;
}
The above function, which is presumed to be a member of the class date for the sake of argument,
contains only one statement; but takes relatively a long time to execute. In general, functions which
perform input and output operation spend a considerable amount of time. The effect of conversion of
the function show () to inline would lead to reduction in execution time.

Inline functions have one disadvantage: the actual code is inserted by the compiler and therefore it
should be known at compile-time. Hence, an inline function cannot be located in a run-time library.
Practically, an inline function is placed near the declaration of a class, usually in the same header file.
It results in a header file having the declaration of a class with its implementation visible to the user.

328 Mastering C++

10.7 Accessing Member Functions within the Class

A member function of a class is accessed by the objects of that class using the dot operator. A member
function of a class can call any other member function of its own class irrespective of its privilege and
this situation is called nesting of member functions. The method for calling member functions of one's
own class is similar to calling any other standard (library) functions as illustrated in the program
nesting.cpp.

// nesting.cpp: A member furction accessing another member function
#include <iostream.h>
class NumberPairs
{
int numl, num2; // private by default
public:
void read()
{
cout << "Enter First Number: ";
cin >> numl;
cout << "Enter Second Number: ";
cin >> num2;
}
int max() // member function
{
if(numl > num2)
return numl;
else
return num2;
}
// Nesting of member function
void ShowMax ()
{
// calls member function max()
cout << "Maximum = " << max();
}
}:
void main()
{
NumberPairs nl;
nl.read();
nl.ShowMax () ;
}

Run
Enter First Number: S
Enter Second Number: 10
Maximum = 10
The class NumberPairs has the member function ShowMax () having the statement
cout << "Maximum = " << max{();

It calls the member functionmax () to compute the maximum of class data members numl and numZ.

Chapter 10: Classes and Objects 329

10.8 Data Hiding

Data 1s hidden inside a class. so that it cannot be accessed even by mistake by any function outside the
class, which is a key feature of OOP. C++ imposes a restriction to access both the data and functions of
a class. It is achieved.by declaring the data part as private. All the data and functions defined in a class
are private by default. But for the sake of clarity, the items are declared as private explicitly. Normally,
data members are declared as private and member functions are declared as public. This is illustrated in
the program part.cpp.

// part.cpp:class hiding vehicle details
#include <iostream.h>
class part

private: // private members
int ModelNum: // model number
int PartNum; // part number
float cost; // cost of a part
public: // public members
void SetPart(int mn, int pn, float ¢)
{
ModelNum = mn; -
PartNum = pn;
cost = c;
}
void ShowPart ()
{

cout << "Model: " << ModelNum << endl;
cout << "Number: " << PartNum << endl;
cout << "Cost: " << cost << endl;

}i
void main ()
{
part pl, p2; // objects pl and p2 of class part are defined
// Values are passed to their object
“pl.SetPart(1996, 23, 1250.55);
p2.SetPart(2000, 243, 2354.75);
// Each object display their values

cout << "First Part Details ..." << endl;
pl.ShowPart () ;
cout << "Second Part Details ..." << endl;

p2.ShowPart () ;
}

Run

First Part Details ...
Model: 1996

Number: 23

lost: 1250.550049
3econd Fart Details ...
Model: 2000

330 Mastering C++

Number: 243
Cost: 2354.75

In the above program, the data fields ModelNum, PartNum, and cost of the class part cannot
be accessed by direct references using pl.ModelNum, pl.PartNum, and pl.cost respectively.
When a class is used, its declaration must be available. Thus, a user of the class is presented with a
description of the class. The internal details of the class, which are not essential to the user are not
presented to him. This is the concept of information hiding or data encapsulation. As far as the user
is concerned, the knowledge of accessible data and member functions of a class is enough. These
interfaces, usually called the user interface methods, specify their abstracted functionality. Thus, to the
user, a class is like a black box with a characterized behavior. A

The purpose of data encapsulation is to prevent accidental modification of information of a class. It
is achieved by imposing a set of rules—the manner in which a class is to be manipulated and the data
and functions of the class can be accessed. The following are the three kinds of users of a class:

+ A class member, which can access all the data members and functions of its class.
« Generic users, which define the instance of a class.
« Derived classes, which can access members based on privileges.

Each user has different access privileges to the object. A class differentiates between access privi-
leges by partitioning its contents and associating each one of them with any one of the following
keywords:

eprivate

e public

e protected
These keywords are called access-control specifiers. All the members that follow a keyword (upto
another keyword) belong to that type. If no keyword is specified, then the members are assumed to have
private privilege. The following specification of a class illustrates these concepts:

class PiggyBank
{

int Money; // Private by default

void Display () // Private by default

{

}

private: // Private by declaration
int AccNumber;

public:
int code; // Public

void SetDhata(int a, int b) // Public
{

}

protected:
int PolicyCode; // Protected
void GetPolicyCode () // Protected
{

}

Chapter 10: Classes and Objects 33

In the above declaration, the members Money, accNumber, and Display () will be of type
private; the members code and SetData () will be of type publ ic; and the members PolicyCode
and GetData () will be of type protected.

Data hiding is mainly designed to protect well-intentioned programmers from honest mistakes. It
protects access to the data according to the design decision made while designing a class. Programmers
who really want to figure out a way to access highly protected data such as private, will find it hard to
do so even by accident. There are mechanisms to access even private data using friends, pointer to
members, etc. from outside the class. '

Private Members

The private members of a class have strict access control. Only the member functions of the same class
can access these members. The private members of a class are inaccessible outside the class, thus,
providing a mechanism for preventing accidental modifications of the data members. It is illustrated in
Figure 10.12. Strictly speaking, information hiding is implemented only partially, the private members
can still be accessed. Access control in C++ has the objective of reducing the likelihood of bugs and
enhancing consistency. Since the basic intention of declaring a class is to use it in a program, the class
should have atleast one member that is not private.

class Person
{ Note: colon here

private : e access specifier
// private members

int age; se=me... private data
int getage(); === private function

};

Person pl;)
a=pl.age; X cannot access private data

pl.getage(); X cannot access private function

Figure 10.12: Private members accessibility

The following example illustrates the situation when all the members of a class are declared as private: .

class Inaccessible
{
int x;
void Display ()
{

cout << "\nData = " << Xx;
}
}:
void main ()
{
Inaccessible objl; // Creating an object.
objl.x = 5; // Error: Invalid access.

objl.Display(); // Error: Invalid access.

332 Mastering C++

The class having all the members with private access control is of no use; there is no means
available to communicate with the external world. Therefore, ciasses of the above type will not contrib-
ute anything to the program.

Protected Members

The access control of the protected members is similar to that of private members and has more signifi-
cance in inheritance. Hence, detailed discussion on this is postponed to the chapter on Inheritance.
Access control of protected members is shown in Figure 10.13.

class Person

(Note: colon here

protected: ===. access specifier
// protected members

int age; === protected data
int getage() ;=== protected function

}i
Person pl;
a=pl.age; }

pl.getage () ; (— ¥ cannotaccess protected member

(same as private)
Figure 10.13: Protected members accessibility

Public Members

The members of a class, which are to be visible (accessible) outside the class, should be declared in
public section. All data members and functions declared in the public section of the class can be
accessed without any restriction from anywhere in the program, either by functions that belong to the
class or by those external to the class. Accessibility control of public members is shown in Figure 10.14.

class Person
(Note: colon here

public fm——— access specifier
// public members

int age; =m— public data
int getage(); = public function
i

Person pl; .
a=pl.age; ¢/ Canaccess public data

pl.getage(); ¢/ can access public function

Figure 10.14: Public members accessibility

10.9 Access Boundary of Objects Revisited

Hierarchy of access, in which privilege code can see the whole structure of an object, but external code
can see only the public features. The access-limit of members within a class, or from objects of a class

is shown in Table 10.1 and Figure 10.15.

Chapter 10: Classes and Objects 333

Accessiblé to
Access Specifier

Own class Members | Objects of a Class

| private: Yes No
protected: Yes No
public: Yes Yes

Table 10.1: Visibility of class members

class C;

V4 :1— - - ¥ Not allowed

Member functions of »| public: |e v

class C can access
both private and
public members

Object of class C
can access only
public members of C

¢ Objc; C)—*—

Figure 10.15: Class member accessibility

The following declaration of a class illustrates the visibility limit of the various class members:
class MyClass
{
private:
int a;
void f1()
{
//can refer to data members a, b, ¢ and functions f1, £2, and £3
}
protected:
int b;
void £2()
{
//can refer to data member a, b, ¢ and functions fl1, f2, and £3
}
public:
int c;
void £3()
{

//can refer to data member a, b, ¢ and functions f1, £2, and f?

}

334 Mastering C++

Consider the statements
MyClass objx; // objx is an object of class MyClass
int 4; // temporary variable d
They define an object obix and an integer variable: d. The accessibility of members of the class
MyClass through the object objx is illustrated in the following section.

1. Accessing private members of the class MyClass:
d = objx.a; // Error: 'MyClass::a' is not accessible
objx.fl(); // Error: 'MyClass::fl()' is not accessible

Both the statements are invalid because the private members of the class are inaccessible.

2. Accessing protected members of the class MyClass:
d = obix.b; // Error: 'MyClass::b' is not accessible
objx.f2(); // Error: 'MyClass::f2()' is not accessible
Both the statements are invalid because the protected members of the class are inaccessible.

3. Accessing public members of the class MyClass:
d = objx.c; // OK
objx.f3(); // OK
Both the statements are valid because the public members of the class are accessible.

10.10 Empty Classes

Although the main reason for using a class is to encapsulate data and code, it is however, possible to
have a class that has neither data nor code. In other words, it is possible to have empty classes. The
declaration of empty classes is as follows:

class xyz { };

class Empty { }:

class abc

{

b

During the initial stages of development of a project, some of the classes are either not fully identi-

fied, or not fully implemented. In such cases, they are implemented as empty classes during the first few
implementations of the project. Such empty classes are also called as stubs. The significant usage of
empty classes can be found with exception handling; itis illustrated in the chapter Exception Handling.

10.11 Pointers within a Class

The size of data members such as vectors when defined using arrays must be known at compile time
itself. In this case, vector size cannot be increased or decreased irrespective of the requirement. This
inflexibility of arrays can be overccme by having a data member for storing vector elements whose size
can be dynamically changed during runtime. The program vector . cpp facilitates the creation of the
vector of varying size during runtime. It has a pointer member instead of an array member. The size of
the vector is varied by creating an object whose vector size is known only at runtime.

/ vector.cpp: vector class with array dynamically allocated
rinclude <iostream.h>
lass vector

Chapter 10: Classes and Objects 335

int *v; // pointer to a veetor
int sz; // size of a vector
public:
void VectorSize(int size) // allocate memory dynamically
{
sz = size;
v = new int| size }; // dynamically allocate vector
}
void read();
void show_sum() ;

void release() // release memory allocated
()
delete v;
}
}i
void vector: :read()
{

for(int i = 0; i < sz; i++)

{
cout << "Enter vector| " << i << "] ? *;
cin >> v[i];

}
void vector: :show_sum()
{
-int sum = 0;
for(int 1 = 0; 1 < sz; i++)
sum += v[i]);
cout << "Vector Sum = " << sum;
}
void main()
{
vector vl;
int count;
cout << "How many elements are there in vector: ";
cin >> count;)
vl.VectorSize(count); // set vector size

vl.read();

v1l.show_sum() ;

vl.release(); // free vector resources
}
Run

How many elements are there in vector: 5
Enter vector[0 ?
Enter vector(1
Enter vector| 2
Enter vector(3

4

5

W 0 U e

(SO e S

]
]
]
]
Enter vector|]
Vector Sum = 1

336 Mastering C++

In main (), the statement

vector vl;
creates an object v1 of the class vector and the statement

vl.VectorSize(count); // set vector size
allocates the required amount (specified by the parameter count) of memory, dynamically for vector
elements storage. The last statement

vl.release();
releases the memory allocated to the pointer data member v of the vector class. The operation of
dynamic allocation of memory to data members can be at best realized by defining constructor and
destructor functions. (More details can be found in the chapter Object Initialization and Cleanup).

10.12 Passing Objects as Arguments

It is possible to have functions which accept objects of a class as arguments, just as there are functions
which accept other variables as arguments. Like any other data type, an object can be passed as an
argument to a function by the following ways:

 pass-by-value, a copy of the entire object is passed to the function
+ pass-by-reference, only the address of the object is passed implicitly to the function
« pass-by-pointer, the address of the object is passed explicitly to the function

In the case of pass-by-value, a copy of the object is passed to the function and any modifications made
to the object inside the function is not reflected in the object used to call the function. Whereas, inpass-
by-reference or pointer, an address of the object is passed to the function and any changes made to the
object inside the function is reflected in the actual object. The parameter passing by reference or pointer
is more efficient since, only the address of the object is passed and not a copy of the entire object.

Passing Objects by Value

The program distance.cpp illustrates the use of objects as function arguments in pass-by-value
mechanism. It performs the addition of distance in feet and inches format.

// distance.cpp: distance manipulation in feet and inches
#include <iostream.h>
class distance

{

private:
float feet;
float inches;

public:
void init(float ft, float in)
{

feet = ft;

inches = in;

}

void read()

{
cout << "Enter feet: "; cin >> feet;
cout << "Enter inches: "; cin >> inches;

Chapter 10: Classes and Objects 337

void show()
{
cout << feet << "-" << inches << "\"';
}
void add(distance dl, distance d2)
{
feet = dl.feet + d2.feet;
inches = dl.inches + d2.inches;
if(inches >= 12.0)

{
// 1 foot = 12.0 inches
feet = feet + 1.0;
inches = inches - 12.0;

}
Y
void main ()
{
distance dl, d2, d4d3;
d2.init(11.0, 6.25);

dl.read();
cout << "dl = "; dl.show();
cout << "\nd2 = "; d2.show();

a3.add(41, 42); // a3 = dl + 42
cout << *\nd3 = dl1+d2 = *; d3.show();
}

Run
Enter feet: 12.0
Enter inches: 7.25
d1r = 12'-7.25"
d2 = 11'-6.25"
a3 dl+ d2 = 24'-1.5"

In main (), the statement

d3.add(d1, d2); // d3'=dl + d2

invokes the member function add () of the class distance by the object d3, with the object d1 and
d2 as arguments. It can directly access the feet and inches variables of d3. The members of d1 and
a2 can be accessed only by using the dot operator (like dl.feet and d1.inches) within the
add () member. Figure 10.16 shows the two objects d1 and d2 being added together with the result
stored in the recipient object d3. Any modification made to the data members of the objects d1 and 42
are not visible to the caller's actual parameters.

Passing Objects by Reference

Accessibility of the objects passed by reference is similar to those passed by value. Modifications
carried out on such objects in the called function will also be reflected in the calling function. The
method of passing objects as reference parameters to a function is illustrated in the program
_account . cpp. Given the account numbers and the balance of two accounts, this program transfers
4 specified sum from one of these accounts to the other and then, updates the balance in both the
accounts.

338 Mastering C++

d3
feet
feet
> 24.0
inches
inches

Member functions of
d3 can refer to its
data directly

d3.add (41, 42); Data in objects passed as
4 4 arguments is referred
with the dot operator
a1 az
feet feet
dl.feet dz. feet
inches inches
dl.inches d2.inches
= o[625 |

Figure 10.16: Objects of the distance class as parameters

// account.cpp: passing objects as parameters to functions
#include<iostream.h>
class AccClass
{
private: // class data members
int accno;
float balance;
public: // class function members
void getdata!)
{
. cout << "Enter the account number for accl object: *;
cin >> accno;
cout << "Enter the balance: *;
cin- >> balance;

}i

// accl.MoneyTransfer(acc2, 100),transfers 100 rupees from accl to acc2

Chapter 10: Classes and Objects

void setdata(int accIn)
{
accno = acclIn;
balance = 0;
}
void setdata(int accIn, float balanceln)
{
accno = accIn;
balance = balanceln;
}
void display()
{
cout << "Account number is: " << accno << endl;
cout << "Balance is: " << balance << endl;
}

void MoneyTransfer (AccClass & acc, float amount);

void AccClass: :MoneyTransfer (AccClass & acc, float amount)

{

}

balance = balance - amount; // deduct money from source
acc.balance = acc.balance + amount; // add money to destination

void main().

{

}

int trans_money;

AccClass accl, acc2, acc3;
accl.getdata();

acc2.setdata(10);

acc3.setdata(20, 750.5);

cout << "Account Information..." << endl;
accl.display();

acc2.display();

acc3.display();

cout << "How much money is to be transferred from acc3 to accl:
cin >> trans_money;

’

acc3.MoneyTransfer (accl, trans_money) ; //transfers money from acc3 to accl

cout << "Updated Information about accounts..." << endl;
accl.display();
acc2.display();
acc3.display();

Run

Enter the account number for accl object: 1
Enter the balance: 100

Account Information...

Account number is: 1

Balance is: 100

Account number is: 10

Balance is: 0

340 Mastering C++

Account number is: 20
Balance is: 750.5
How much money is to be transferred from acc3 to accl: 200
Updated Information about accounts...
Account number is: 1
Balance is: 300
Account number is: 10
Balance is: 0
Account number is: 20
Balance is: 550.5

In main (), the statement

acc3.MoneyTransfer (accl, trans_money);

transfers the object acc1 by reference to the member function MoneyTransfer (). It is to be noted
that when the MoneyTransfer () is invoked with accl as the object parameter, the data members
of ace3 are accessed without the use of the class member access operator, while the data members of
accl are accessed by using their names in association with the name of the object to which they
belong. An object can also be passed to a non-member function of the class and that can have access
to the public members only through the objects passed as arguments to it.

Passing Objects by Pointer

The members of objects passed by pointer are accessed by using the -> operator, and they have similar
effect as those passed by value. The above program requires the following changes if parameters are to
be passed by pointer:

1. The prototype of the member function MoneyTransfer () has to be changed to:
void MoneyTransfer (AccClass * acc, float amount);
2. The definition of the member function MoneyTransfer () has to be changed to:

void AccClass: :MoneyTransfer (AccClass & acc, float amount)

{

balance = balance - amount; // deduct money from source
acc->balance = acc->balance + amount; // add money to destination
} .
3. The statement invoking the member function MoneyTransfer () has to be changed to:

acc3.MoneyTransfer (&accl, trans_money);

10.13 Returning Objects from Functions

Similar to sending objects as parameters to functions, it is also possible to return objects from func-
tions. The syntax used is similar to that of returning variables from functions. The return type of the
function is declared as the return object type. It is illustrated in the program complex . cpp.

// complex.cpp: Addition of Complex Numbers, class complex as data type
#include <iostream.h>
#include <math.h>

class complex
{
private:
float real; // real part of complex number
float imag; // imaginary part of complex number

Chapter 10: Classes and Objects 341

public:
void getdatal()
{
cout << "Real Part ? *;
cin >> real:
cout << "Imag Part ? *“;
cin >> imag;
}
void outdata(char *msg) // display number in x+iy form
{
cout << msg << real;
1if(imag < 0)
cout << "-i";
else
cout << "#1i%;
cout << fabs(imag) << endl;

}
complex add(complex c2 }; // addition of complex numbers
}i
complex complex::add(complex c2) // add default and c2 objects
{
complex temp; // object tenp of complex class
temp.real = real + c2.real; // add real parts
temp.imag = imag + c2.imag; // add imaginary parts
return{ temp); // return complex cbject

}

void main()

{
complex cl, c2, c3; // cl, c2, and c2 are objects of complex
cout << "Enter Complex Number cl .." << endl;
cl.getdatal();
cout << "Enter Complex Number c2 .." << endl;
c2.getdatal(); ,
c3 = cl.add(c2); // add cl and c2 assign to c3
c3.outdata("c3 = cl.add(c2): ");
}
Run

Enter Complex Number cl .
Real Part ? 1.5
Imag Part ? 2
Enter Complex Number c2
Real Part ? 3
Imag Part ? -4.3
¢3 = cl.add(c2): 4.5-i2.3
In main (), the statement
c3 = cl.add(c2'); // add cl and c2 assign to c3
invokes the function add () of the class complex by passing the object c2 as a parameter. The
statement in this function,
return(temp); // return complex object
returns the object temp as a return object.

342 Mastering C++

10.14 Friend Functions and Friend Classes

The concept of encapsulation and data hiding dictate that non-member functions should not be al-
lowed to access an object’s private and protected members. The policy is, if you are not a member you
cannot get it. Sometimes this feature leads to considerable inconvenience in programming. Imagine that
the user wants a function to operate on objects of two different classes. At such times, it is required to
allow functions outside a class to access and manipulate the private members of the class. In C++, this
is achieved by using the concept of friends.

One of the convenient and a controversial feature of C++ is allowing non-member functions to
access even the private members of a class using friend functions or friend classes. It permits a function
or all the functions of another class to access a different class’s private members. The accessibility of
class members in various forms is shown in Figure 10.17.

class X class Y

private:

£yl ()

data or function

\ 4

protected:

»| data or function

AN

friend class Y;
friend functionl/(
friend Z:£z1();

’

~

class Z

£21()

functionl ()

friend of X

fz2 ()

Figure 10.17: Class members accessibility in various forms

The function declaration must be prefixed by the keyword £riend whereas the function definition
must not. The function could be defined anywhere in the program similar to any normal C++ function.
The functions that are declared with the keyword friend are called friend functions. A function can
be a friend to multiple classes. A friend function possesses the following special characteristics:

Chapter 10: Classes and Objects 343

« The scope of a friend function is not limited to the class in which it has been declared as a friend.

o A friend function cannot be called using the object of that class; it is not in the scope of the class. It
can be invoked like a normal function without the use of any object.

« Unlike class member functions, it cannot access the class members directly. However, it can use the
object and the dot operator with each member name to access both the private and public members.

« Itcan be either declared in the private part or the public part of a class without affecting its meaning.
Consider the following skeleton of the program code to illustrate friend functions.

class A
{
private:
int value; // value is private data
public:
void setval(int v)
{ value = v; }
int getval ()
{ return(value); }

}:
// function decrement: tries to alter A's private data
void decrement(A &a)

{

a.value--; // Error:: not allowed to access private data
} ‘ .
class B // class B: tries to access A's private data
{

public:

void touch (A &a)
{ a.value++; }

Y

This code will not compile, since the function decrement () and the function touch () of the
class B attempt to access a private data member of the class A.

The function can be allowed explicitly to access A’s data and class B members can be allowed to
access the class A’s data. To accomplish this, the offending classless function decremept () and
the class B are declared to be friends of the class A as illustrated in the following code:

class A

{
public:
friend class B; // B is my friend, I trust him
friend void decrement (A &what); // decrement() is also a gdod pal

Yi
Concerning friendship between classes, the following should be noted:
« Friendship is not mutual by default. That is, once B is declared as a friend of A, this does not give A
the right to access the private members of the class B.
« Friendship, when applied to program design, is an escape mechanism which creates exceptions to the
rule of data hiding. Usage of friend classes should, therefore, be limited to those cases where it is
absolutely essential.

344 Mastering C++

Bridging Classes with Friend Functions

Consider a situation of operating on objects of two different classes. In such a situation, friend fuzc-
tions can be used to bridge the two classes. It is illustrated in the program friendl . cpp. The syntax
of defining friend non-member function is shown in Figure 10.18.

class Testclass
{

int numl, num2;

public:
// public members
keyword
friend float sum (Testclass obj);
};
X No friend keyword
X No scope resolution operator, Testclass :: sum cannot be made
float sum (Testclass obj) private data member

float result;
result = obj.numl + obj.num2;
return result;

}

Figure 10.18: Friend function of a class

// friend1l.cpp: Normal function accessing object's private members
#include <iostream.h>

class two; // advance declaration like function prototype
class one
{
private:
int datal;
public: _
void setdata(int init)
{
datal = init;
}
friend int add_both(one a, two b); // friend function
}i
class two
{
private:
int data2;
public:
void setdata(int init)
{
data2 = init;
}

friend int add_both(one a, two b }; // friend function

Chapter 10: Classes and Objects 345

;/ friend function of class one and two
int add_both(one a, two b)
{

return a.datal + b.data2; // a.datal and b.data2 are private

}

void main{)

A

{
one a;
two b;
a.setdata(5)
b.setdata(10);
‘cout << "Sum of one and two: " << add_both{ a, b);

}
Run

Sum of one and two: 15

The above program, contains two classes named one and two. To allow the normal function
add_both () to have an access to private data members of objects of these classes, it must be
declared as a friend function. It has been declared with the friend keyword in both the classes as:

friend int add_both(one a, two b);
This declaration can be placed either in the private or the public section of the class.

An object of each class has been passed as an argument to the function add_both (). Being a
friend function, it can access the private members of both classes through these arguments.

Observe the following declaration at the beginning of the program
class two; // advance declaration like function prototype
It is necessary, since a class cannot be referred until it has been declared before the class one. It informs
the compiler that the class two's specification will appear later.

Though friend functions add flexibility to the language and make programming convenient in cer-
tain situations, they are controversial; it goes against the philosophy that only member functions can
access a class’s private data. Friend functions should be used sparingly. If a program uses many friend
functions, it can easily be concluded that there is a basic flaw in the design of a program and it would be
better to redesign such programs. However, friend functions are very useful in certain situations. One
such example is when a friend is used to increase the versatility of overloaded operators, which will be
discussed in the chapter Operator Overloading.

Friend functions are useful in the following situations:
« Function operating on objects of two different classes. This is the ideal situation where the friend
function can be used to bridge two classes.
« Friend functions can be used to increase the versatility of overloaded operators.

« Sometimes, a friend allows a more obvious syntax for calling a function, rather than what a member
function can do.

Friend Classes

Friend functions permit an exception to the rules of data encapsulation. The £riend keyword allows
a function, or all the functions of another class to manipulate the private members of the original class.
The syntax of declaring friend class is shown in Figure 10.19.

346 Mastering C++

class boy

{
private: == private specifier
int incomel;
int income2;
public: = public specifier
int gettotal ()
{
return incomel + income2;
}
friend class girl; //class girl can access private members
}i
class girl
{
// all the members of class girl can access attributes of boy
public: private data of
int girlfunc (boy bl) class boy
A
result = bl.incomel+bl.income2;
return result;
} .
id show() private data of
‘('Ol show(class boy
boy bl;
cout << "Incomel: " << bl.incomel; // private data of boy
}
}i

Figure 10.19: girl class is a friend of class boy

All the member functions of one class can be friend functions of another class. The program
friend2.cpp demonstrates the method of bridging classes using friend class.

// friend2.cpp: class girl is declared as a friend of class boy
#include <iostream.h>
// forward declaration of class girl; is optional
class boy
{
private: // private members
int incomel;
int income2;
public:
void setdata(int inl, int in2)
{
incomel = inl;
income2 = in2;
}

friend class girl; // class girl can access private data

Chapter 10: Classes and Objects 347

class girl
{
int income; // income is private data member
public:
int girlfunc(boy bl)
{
return bl.incomel+bl.income2;
}
void setdata(int in)
{
income = in;
}
void show()
{
boy bl;
bl.setdata(100, 200);
cout << "boy’'s Incomel in show(): * << bl.incomel << endl;
cout << "girl’s income in show(): " << income << endl;
}
}i
vdid main()
.
boy bl;
girl gl;
bl.setdata(500, 1000);
gl.setdata(300);
cout << "boy bl total income: " << gl.girlfunc(bl) << endl;
gl.show() ;
};

Run

boy bl total income: 1500
boy’'s Incomel in show(): 100
girl’s income in show(): 300

The statement in the class boy
friend class girl; // class girl can access private data members
declares that all the member functions of the class gir1 are friend functions of class boy but not the
other way. (Thus in C++, class girl, the friend class of the class boy, does not mean that the class
boy is the friend of the class girl). The objects of the class girl can access all the members of the
class boy irrespective of their access privileges.
The function show () in the girl class
cout << "boy’s Incomel in show(): " << bl.incomel << endl;
accesses the private data member incomel of the boy class.

Class Friend to a Specified Class Member

When only specific member function of one class should be friend function of another class, it must be
specified explicitly using the scope resolution operator as shown in Figure 10.20. The function
girlfunc () is a member function of class girl and a friend of class boy.

348 Mastering C++

class boy

{
private:) o
int incomel; =~ private specifier
int income2;
public:
int gettotal() -~ public specifier
{
return incomel + income2;
} class name to which this function is a member
friend girl :: girlfunc(boy bl); //class girl's girlfunc() is allowed to
}i // access data and functions of class boy

class girl

¢ public: private data members of class boy

int girlfunc(boy bl :””,,4’:;;7
{

result = bl.incomel + bl.income2;
return result;

}
void show () // cannot access private members of boy
{
boy bl; // only public members can be accessed
}

Figure 10.20: Member function to which class boy is a friend

In the class gir1l, only function girlfunc () is allowed to access the private data and functions
of the classboy. So only this function could be specifically made a friend in the class boy as illustrated
in the program friend3.cpp.

// friend3.cpp: specific member function class girl is friend of boy
#include <iostream.h>
class boy; // advance declaration like function prototype
class girl
{
int income; // income is private data member
public:
int girlfunc(boy bl);
void setdata(int in)

{
income = in;
}
void show ()
{
cout << *"girl income: " << income;
) .

Chapter 10: Classes and Objects

class boy
{
private: // private members
int incomels
int income?2;
public:
void setdata(int inl, int in2)

{

incomel inl;
income2 = in2;
}
// only this function can access private data of boy
friend int girl::girlfunc(boy bl);
};
// only this function can access private data of the boy class
int girl::girlfunc(boy bl)
{
return bl.incomel+bl.income?2;
}
void main ()
{
boy bl;
girl gl;
bl.setdata(500, 1000);
gl.setdata(300);
cout << "boy bl total income: " << gl.girlfunc(bl) << endl;
gl.show() ;
}

Run

boy bl total income: 1500
girl income: 300

The null-body class declaration statement,
class boy; // advance declaration like function prototype

349

appears in the beginning of the program; a class cannot be referred until it has been declared before the
class girl. It informs the compiler that the class boy is defined later. The statement in the class boy

friend int girl::girlfunc(boy bl);

declares that only member function girlfunc() of the class girl can access private data and

member functions of the class boy.

10.15 Constant Parameters and Member Functions

Certain member functions of a class, access the class data members without modifying them. It is
advisable to declare such functions as const (constant) functions. The syntax for declaring const
member functions is shown in Figure 10.21. A const member function is used to indicate that it does

not alter the data fields of the object, but only inspects them.

350 Mastering C++

Keyword

ReturnType FunctionName (arguments) const
Figure 10.21: Syntax of declaring a constant member function

A member function, which does not alter any data members in the class can be declared as const
member function. The following statements illustrate the same:
void showname () const;
float divide() const;
The qualifier const is suffixed to the function in both the declaration and the definition. The compiler
will generate an error message if such functions attempt to alter the class data members. The concept of
constant member functions is illustrated in the program constmem. cpp.

// constmem.cpp: person class with const member functions
#include <iostream.h>

#include <string.h>

class Person

{

private:
char *name; // name of person
char *address; // address field
char *phone; // telephone number
public:

void init () ;
void clear();
// functions to set fields
void setname(char const *str);
void setaddress (char const *str);
void setphone(char const *str);
// funictions to inspect fields
char const *getname(void) const;
char const *getaddress(void) const;
char const *getphone(void) const;
Y
// i1nitialize class data members to NULL
inline void Person::init ()
{
name = address = phone = 0;
) .
// release memory allncated to class data members
inline void Person: :clear ()
(
delete name;
delete address;
delete phone;

